mri.optimizers.utils.cost
mri.optimizers.utils.cost#
Different cost functions for the optimization.
- class DualGapCost(linear_op, initial_cost=1000000.0, tolerance=0.0001, cost_interval=None, test_range=4, verbose=False, plot_output=None)[source]#
Bases:
modopt.opt.cost.costObj
Define the dual-gap cost function.
- _calc_cost(x_new, y_new, *args, **kwargs)[source]#
Return the dual-gap cost.
- Parameters
x_new (numpy.ndarray) – new primal solution.
y_new (numpy.ndarray) – new dual solution.
- Returns
norm – the dual-gap.
- Return type
- _abc_impl = <_abc._abc_data object>#
- class GenericCost(gradient_op, prox_op, initial_cost=1000000.0, tolerance=0.0001, cost_interval=None, test_range=4, optimizer_type='forward_backward', linear_op=None, verbose=False, plot_output=None)[source]#
Bases:
modopt.opt.cost.costObj
Define the Generic cost function.
It is based on the cost function of the gradient operator and the cost function of the proximity operator.
- _calc_cost(x_new, *args, **kwargs)[source]#
Return the cost.
- Parameters
x_new (numpy.ndarray) – intermediate solution in the optimization problem.
- Returns
cost – the cost function defined by the operators (gradient + prox_op).
- Return type
- _abc_impl = <_abc._abc_data object>#