mri.operators.linear.wavelet
mri.operators.linear.wavelet#
Provide linears operators classes adapted to MRI reconstruction algorithms.
- class WaveletN(wavelet_name, nb_scale=4, verbose=0, dim=2, n_coils=1, n_jobs=1, backend='threading', **kwargs)[source]#
Bases:
mri.operators.base.OperatorBase
2D and 3D wavelet transform class.
Initialize the ‘WaveletN’ class.
- Parameters
wavelet_name (str) – the wavelet name to be used during the decomposition.
nb_scales (int, default 4) – the number of scales in the decomposition.
n_coils (int, default 1) – the number of coils for multichannel reconstruction
n_jobs (int, default 1) – the number of cores to use for multichannel.
backend (str, default "threading") – the backend to use for parallel multichannel linear operation.
verbose (int, default 0) – the verbosity level.
- op(data)[source]#
Define the wavelet operator.
This method returns the input data convolved with the wavelet filter.
- Parameters
data (numpy.ndarray or Image) – input 2D data array.
- Returns
coeffs – the wavelet coefficients.
- Return type
- _adj_op(coeffs, coeffs_shape, dtype='array')[source]#
Define the wavelet adjoint operator.
This method returns the reconstructed image.
- Parameters
coeffs (numpy.ndarray) – the wavelet coefficients.
dtype (str, default 'array') – if ‘array’ return the data as a ndarray, otherwise return a pysap.Image.
- Returns
data – the reconstructed data.
- Return type
- adj_op(coeffs)[source]#
Define the wavelet adjoint operator.
This method returns the reconstructed image.
- Parameters
coeffs (numpy.ndarray) – the wavelet coefficients.
- Returns
data – the reconstructed data.
- Return type
- class WaveletUD2(wavelet_id=24, nb_scale=4, n_jobs=1, backend='threading', n_coils=1, verbose=0)[source]#
Bases:
mri.operators.base.OperatorBase
Wavelet undecimated operator using pysap wrapper.
- Parameters
wavelet_id (int, default 24 = undecimated (bi-) orthogonal transform) – ID of wavelet being used
nb_scale (int, default 4) – the number of scales in the decomposition.
multichannel (bool, default False) – Boolean value to indicate if the incoming data is from multiple-channels
n_jobs (int, default 0) – Number of CPUs to run on. Only applicable if multichannel=True.
backend ('threading' | 'multiprocessing', default 'threading') – Denotes the backend to use for parallel execution across multiple channels.
verbose (int, default 0) – The verbosity level for Parallel operation from joblib
- _get_filters(shape)[source]#
Get the Wavelet coefficients of Delta[0][0].
This function is called only once and later the wavelet coefficients are obtained by convolving these coefficients with input Data
- Parameters
shape (tuple or array) – Shape of data on which the filter will be applied.
- _op(data)[source]#
Define the wavelet operator for single channel.
Returns wavelet coefficients for a single channel
- Parameters
data (numpy.ndarray or Image) – input 2D data array.
- Returns
coeffs – the wavelet coefficients.
- Return type
- op(data)[source]#
Define the wavelet operator.
This method returns the input data convolved with the wavelet filter.
- Parameters
data (numpy.ndarray or Image) – input 2D data array.
- Returns
coeffs – the wavelet coefficients.
- Return type
- _adj_op(coeffs, coeffs_shape)[source]#
Define the wavelet adjoint operator.
This method returns the reconstructed image for single channel.
- Parameters
coeffs (numpy.ndarray) – the wavelet coefficients.
coeffs_shape (numpy.ndarray) – The shape of coefficients to unflatten before adjoint operation
- Returns
data – the reconstructed data.
- Return type
- adj_op(coeffs)[source]#
Define the wavelet adjoint operator.
This method returns the reconstructed image.
- Parameters
coeffs (numpy.ndarray) – the wavelet coefficients.
- Returns
data – the reconstructed data.
- Return type