astro.deconvolution.deconvolve
astro.deconvolution.deconvolve#
DECONVOLVE.
This module defines functions to perform galaxy image deconvolution using the Condat-Vu algorithm.
- psf_convolve(data, psf, psf_rot=False)[source]#
PSF Convolution.
Convolve the input data with the PSF provided.
- Parameters
data (numpy.ndarray) – Input data, 2D image
psf (numpy.ndarray) – Input PSF, 2D image
psf_rot (bool, optional) – Option to rotate the input PSF, default is
False
- Returns
Convolved image
- Return type
- get_weights(data, psf, filters, wave_thresh_factor=array([3, 3, 4]))[source]#
Get Sparsity Weights.
Get the weights needed for the sparse regularisation term in the deconvolution problem.
- Parameters
data (numpy.ndarray) – Input data, 2D image
psf (numpy.ndarray) – Input PSF, 2D image
filters (numpy.ndarray) – Wavelet filters
wave_thresh_factor (numpy.ndarray, optional) – Threshold factors for each wavelet scale, default is
np.array([3, 3, 4])
- Returns
Weights
- Return type
- sparse_deconv_condatvu(data, psf, n_iter=300, n_reweights=1, verbose=False, progress=True)[source]#
Sparse Deconvolution with Condat-Vu.
Perform deconvolution using sparse regularisation with the Condat-Vu algorithm.
- Parameters
data (numpy.ndarray) – Input data, 2D image
psf (numpy.ndarray) – Input PSF, 2D image
n_iter (int, optional) – Maximum number of iterations, default is
300
n_reweights (int, optional) – Number of reweightings, default is
1
verbose (bool, optional) – Verbosity option, default is
True
progress (bool, optional) – Option to show progress bar, default is
True
- Returns
Deconvolved image
- Return type