Neuroimaging cartesian reconstruction
Contents
Note
Click here to download the full example code or to run this example in your browser via Binder
Neuroimaging cartesian reconstruction#
Author: Chaithya G R
In this tutorial we will reconstruct an MRI image from the sparse kspace measurements.
Import neuroimaging data#
We use the toy datasets available in pysap, more specifically a 2D brain slice and the cartesian acquisition scheme.
Package import
from mri.operators import FFT, WaveletN
from mri.operators.utils import convert_mask_to_locations
from mri.reconstructors import SingleChannelReconstructor
from pysap.data import get_sample_data
# Third party import
from modopt.opt.proximity import SparseThreshold
from modopt.opt.linear import Identity
from modopt.math.metrics import ssim
import numpy as np
import matplotlib.pyplot as plt
Loading input data
image = get_sample_data('2d-mri')
# Obtain K-Space Cartesian Mask
mask = get_sample_data("cartesian-mri-mask")
View Input
plt.subplot(1, 2, 1)
plt.imshow(np.abs(image), cmap='gray')
plt.title("MRI Data")
plt.subplot(1, 2, 2)
plt.imshow(mask, cmap='gray')
plt.title("K-space Sampling Mask")
plt.show()
Out:
/volatile/Chaithya/actions-runner/_work/pysap/pysap/examples/pysap-mri/cartesian_reconstruction.py:45: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
plt.show()
Generate the kspace#
From the 2D brain slice and the acquisition mask, we retrospectively undersample the k-space using a cartesian acquisition mask We then reconstruct the zero order solution as a baseline
# Get the locations of the kspace samples
kspace_loc = convert_mask_to_locations(mask.data)
# Generate the subsampled kspace
fourier_op = FFT(samples=kspace_loc, shape=image.shape)
kspace_data = fourier_op.op(image)
Zero order solution
zero_soln = fourier_op.adj_op(kspace_data)
base_ssim = ssim(zero_soln, image)
plt.imshow(np.abs(zero_soln), cmap='gray')
plt.title('Zero Order Solution : SSIM = ' + str(np.around(base_ssim, 2)))
plt.show()
Out:
/volatile/Chaithya/actions-runner/_work/pysap/pysap/examples/pysap-mri/cartesian_reconstruction.py:68: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
plt.show()
FISTA optimization#
We now want to refine the zero order solution using a FISTA optimization. The cost function is set to Proximity Cost + Gradient Cost
# Setup the operators
linear_op = WaveletN(wavelet_name="sym8", nb_scales=4)
regularizer_op = SparseThreshold(Identity(), 2 * 1e-7, thresh_type="soft")
# Setup Reconstructor
reconstructor = SingleChannelReconstructor(
fourier_op=fourier_op,
linear_op=linear_op,
regularizer_op=regularizer_op,
gradient_formulation='synthesis',
verbose=1,
)
Out:
WARNING: Making input data immutable.
Lipschitz constant is 1.0999999146827621
The lipschitz constraint is satisfied
Start Reconstruction
image_rec, costs, metrics = reconstructor.reconstruct(
kspace_data=kspace_data,
optimization_alg='fista',
num_iterations=200,
)
recon_ssim = ssim(image_rec, image)
plt.imshow(np.abs(image_rec), cmap='gray')
plt.title('Iterative Reconstruction : SSIM = ' + str(np.around(recon_ssim, 2)))
plt.show()
Out:
WARNING: Making input data immutable.
- mu: 2e-07
- lipschitz constant: 1.0999999146827621
- data: (512, 512)
- wavelet: <mri.operators.linear.wavelet.WaveletN object at 0x7f3a681cb2e0> - 4
- max iterations: 200
- image variable shape: (512, 512)
- alpha variable shape: (291721,)
----------------------------------------
Starting optimization...
0%| | 0/200 [00:00<?, ?it/s]
0%| | 1/200 [00:00<00:24, 8.06it/s]
2%|1 | 3/200 [00:00<00:19, 10.20it/s]
2%|2 | 5/200 [00:00<00:18, 10.80it/s]
4%|3 | 7/200 [00:00<00:17, 11.03it/s]
4%|4 | 9/200 [00:00<00:17, 11.15it/s]
6%|5 | 11/200 [00:01<00:16, 11.18it/s]
6%|6 | 13/200 [00:01<00:16, 11.28it/s]
8%|7 | 15/200 [00:01<00:16, 11.34it/s]
8%|8 | 17/200 [00:01<00:16, 11.31it/s]
10%|9 | 19/200 [00:01<00:15, 11.41it/s]
10%|# | 21/200 [00:01<00:15, 11.43it/s]
12%|#1 | 23/200 [00:02<00:15, 11.44it/s]
12%|#2 | 25/200 [00:02<00:15, 11.41it/s]
14%|#3 | 27/200 [00:02<00:15, 11.38it/s]
14%|#4 | 29/200 [00:02<00:15, 11.35it/s]
16%|#5 | 31/200 [00:02<00:14, 11.38it/s]
16%|#6 | 33/200 [00:02<00:14, 11.30it/s]
18%|#7 | 35/200 [00:03<00:14, 11.31it/s]
18%|#8 | 37/200 [00:03<00:14, 11.37it/s]
20%|#9 | 39/200 [00:03<00:14, 11.40it/s]
20%|## | 41/200 [00:03<00:13, 11.39it/s]
22%|##1 | 43/200 [00:03<00:13, 11.32it/s]
22%|##2 | 45/200 [00:03<00:13, 11.38it/s]
24%|##3 | 47/200 [00:04<00:13, 11.37it/s]
24%|##4 | 49/200 [00:04<00:13, 11.44it/s]
26%|##5 | 51/200 [00:04<00:13, 11.36it/s]
26%|##6 | 53/200 [00:04<00:12, 11.39it/s]
28%|##7 | 55/200 [00:04<00:12, 11.44it/s]
28%|##8 | 57/200 [00:05<00:12, 11.45it/s]
30%|##9 | 59/200 [00:05<00:12, 11.49it/s]
30%|### | 61/200 [00:05<00:12, 11.49it/s]
32%|###1 | 63/200 [00:05<00:11, 11.45it/s]
32%|###2 | 65/200 [00:05<00:11, 11.43it/s]
34%|###3 | 67/200 [00:05<00:11, 11.42it/s]
34%|###4 | 69/200 [00:06<00:11, 11.43it/s]
36%|###5 | 71/200 [00:06<00:11, 11.40it/s]
36%|###6 | 73/200 [00:06<00:11, 11.39it/s]
38%|###7 | 75/200 [00:06<00:10, 11.38it/s]
38%|###8 | 77/200 [00:06<00:10, 11.39it/s]
40%|###9 | 79/200 [00:06<00:10, 11.35it/s]
40%|#### | 81/200 [00:07<00:10, 11.37it/s]
42%|####1 | 83/200 [00:07<00:10, 11.45it/s]
42%|####2 | 85/200 [00:07<00:10, 11.40it/s]
44%|####3 | 87/200 [00:07<00:09, 11.38it/s]
44%|####4 | 89/200 [00:07<00:09, 11.42it/s]
46%|####5 | 91/200 [00:08<00:09, 11.46it/s]
46%|####6 | 93/200 [00:08<00:09, 11.39it/s]
48%|####7 | 95/200 [00:08<00:09, 11.38it/s]
48%|####8 | 97/200 [00:08<00:09, 11.35it/s]
50%|####9 | 99/200 [00:08<00:08, 11.31it/s]
50%|##### | 101/200 [00:08<00:08, 11.33it/s]
52%|#####1 | 103/200 [00:09<00:08, 11.37it/s]
52%|#####2 | 105/200 [00:09<00:08, 11.35it/s]
54%|#####3 | 107/200 [00:09<00:08, 11.37it/s]
55%|#####4 | 109/200 [00:09<00:07, 11.39it/s]
56%|#####5 | 111/200 [00:09<00:07, 11.49it/s]
56%|#####6 | 113/200 [00:09<00:07, 11.48it/s]
57%|#####7 | 115/200 [00:10<00:07, 11.47it/s]
58%|#####8 | 117/200 [00:10<00:07, 11.41it/s]
60%|#####9 | 119/200 [00:10<00:07, 11.47it/s]
60%|###### | 121/200 [00:10<00:06, 11.47it/s]
62%|######1 | 123/200 [00:10<00:06, 11.45it/s]
62%|######2 | 125/200 [00:11<00:06, 11.37it/s]
64%|######3 | 127/200 [00:11<00:06, 11.38it/s]
64%|######4 | 129/200 [00:11<00:06, 11.36it/s]
66%|######5 | 131/200 [00:11<00:06, 11.40it/s]
66%|######6 | 133/200 [00:11<00:05, 11.45it/s]
68%|######7 | 135/200 [00:11<00:05, 11.44it/s]
68%|######8 | 137/200 [00:12<00:05, 11.42it/s]
70%|######9 | 139/200 [00:12<00:05, 11.42it/s]
70%|####### | 141/200 [00:12<00:05, 11.37it/s]
72%|#######1 | 143/200 [00:12<00:04, 11.41it/s]
72%|#######2 | 145/200 [00:12<00:04, 11.42it/s]
74%|#######3 | 147/200 [00:12<00:04, 11.39it/s]
74%|#######4 | 149/200 [00:13<00:04, 11.43it/s]
76%|#######5 | 151/200 [00:13<00:04, 11.37it/s]
76%|#######6 | 153/200 [00:13<00:04, 11.39it/s]
78%|#######7 | 155/200 [00:13<00:03, 11.48it/s]
78%|#######8 | 157/200 [00:13<00:03, 11.46it/s]
80%|#######9 | 159/200 [00:13<00:03, 11.44it/s]
80%|######## | 161/200 [00:14<00:03, 11.40it/s]
82%|########1 | 163/200 [00:14<00:03, 11.39it/s]
82%|########2 | 165/200 [00:14<00:03, 11.43it/s]
84%|########3 | 167/200 [00:14<00:02, 11.39it/s]
84%|########4 | 169/200 [00:14<00:02, 11.42it/s]
86%|########5 | 171/200 [00:15<00:02, 11.38it/s]
86%|########6 | 173/200 [00:15<00:02, 11.39it/s]
88%|########7 | 175/200 [00:15<00:02, 11.41it/s]
88%|########8 | 177/200 [00:15<00:02, 11.39it/s]
90%|########9 | 179/200 [00:15<00:01, 11.37it/s]
90%|######### | 181/200 [00:15<00:01, 11.34it/s]
92%|#########1| 183/200 [00:16<00:01, 11.34it/s]
92%|#########2| 185/200 [00:16<00:01, 11.30it/s]
94%|#########3| 187/200 [00:16<00:01, 11.33it/s]
94%|#########4| 189/200 [00:16<00:00, 11.43it/s]
96%|#########5| 191/200 [00:16<00:00, 11.46it/s]
96%|#########6| 193/200 [00:16<00:00, 11.40it/s]
98%|#########7| 195/200 [00:17<00:00, 11.41it/s]
98%|#########8| 197/200 [00:17<00:00, 11.41it/s]
100%|#########9| 199/200 [00:17<00:00, 11.35it/s]
100%|##########| 200/200 [00:17<00:00, 11.38it/s]
- final iteration number: 200
- final log10 cost value: 6.0
- converged: False
Done.
Execution time: 17.58240639604628 seconds
----------------------------------------
/volatile/Chaithya/actions-runner/_work/pysap/pysap/examples/pysap-mri/cartesian_reconstruction.py:98: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
plt.show()
Total running time of the script: ( 0 minutes 21.156 seconds)