mri.operators.gradient.utils
mri.operators.gradient.utils#
Different tools required for the reconstruction.
- check_lipschitz_cst(f, x_shape, lipschitz_cst, max_nb_of_iter=10, x_dtype=<class 'numpy.float64'>)[source]#
This method checks that the Lipschitz constraints are statisfied for max_nb_of_iter random inputs: .. math:: ||f(x) - f(y)|| < lipschitz_cst ||x - y||
- Parameters
f (function) – A function to check for lipschitz_cst according to the above equation.
x_shape (tuple) – Input data shape for function f.
lipschitz_cst (float) – The Lischitz constant associated to the function f.
max_nb_of_iter (int, default=10) – The number of random inputs used to validate the constant lipschitz_cst according to the above formula.
- Returns
If False then lipschitz_cst is not respecting the above formula. Otherwise, lipschitz_cst might be an upper bound of the real Lipschitz constant for the function f.
- Return type