astro.denoising.noise
astro.denoising.noise#
NOISE.
This module defines functions for estimating the noise in images.
- sigma_clip(data, n_iter=3)[source]#
Sigma Clipping.
Perform iterative sigma clipping on input data.
- Parameters
data (numpy.ndarray) – Input data array
n_iter (int, optional) – Number of iterations, default is
3
- Returns
Mean and standard deviation of clipped sample
- Return type
- Raises
Examples
>>> import numpy as np >>> from astro.denoising.noise import sigma_clip >>> np.random.seed(0) >>> data = np.random.ranf((3, 3)) >>> sigma_clip(data) (0.6415801460355164, 0.17648980804276407)
- noise_est(data, n_iter=3)[source]#
Noise Estimate.
Estimate the standard deviation of the noise in the input data using a smoothed median.
- Parameters
data (numpy.ndarray) – Input 2D-array
n_iter (int, optional) – Number of sigma clipping iterations, default is
3
- Returns
Standard deviation of the noise
- Return type
- Raises
TypeError – For invalid input
data
type
Examples
>>> import numpy as np >>> from astro.denoising.noise import noise_est >>> np.random.seed(0) >>> data = np.random.ranf((3, 3)) >>> noise_est(data) 0.11018895815851695
- sigma_scales(sigma, n_scales=4, kernel_shape=(51, 51))[source]#
Sigma Scales.
Get rescaled sigma values for wavelet decomposition.
- Parameters
sigma (float) – Standard deviation of the noise
n_scales (int, optional) – Number of wavelet scales, default is
4
kernel_shape (tuple, list or numpy.ndarray, optional) – Shape of dummy image kernel, default is
(51, 51)
- Returns
Rescaled sigma values not including coarse scale
- Return type
- Raises
Examples
>>> from astro.denoising.noise import sigma_scales >>> sigma_scales(1) array([0.89079631, 0.20066385, 0.0855075 ])